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Abstract
This paper aims at providing a summary of the theoretical models available for non-Newtonian
fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid
spreading test are briefly reviewed. Then how the complete wetting and partial wetting
power-law fluids spread over a solid substrate is examined. The possible extension of
Newtonian fluid models to power-law fluids is also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wetting solid surfaces using liquids has broad applications
in printing, painting, adhesion, lubrication, and spraying.
Figure 1 (upper panel) depicts schematically the drop wetting
process. Extensive studies have been devoted to spreading and
wetting dynamics of Newtonian fluids. In particular, ways
of removing the stress singularity in the immediate region of
the contact line were proposed. Pertinent review articles on
wetting and spreading of fluids are available in de Gennes [1],
Leger and Joanny [2], Voinov [3], Blake [4], and in the books
by Berg [3], de Gennes et al [5], and Starov et al [6].

Numerous polymer solutions and particulate suspensions
exhibit non-Newtonian characteristics. Only a few theoretical
and experimental studies have explored how non-Newtonian
fluids spread over solid substrates [7–14]. In this paper,
the experimental observations and theoretical models for
spreading and wetting of Newtonian fluids are briefly reviewed
(section 2). Both complete wetting and partial wetting systems
are discussed. Then, the lubrication models available in open
literature for power-law fluids are summarized (section 3). The
possible extension of Newtonian fluid models to power-law
fluids is discussed.
5 Author to whom any correspondence should be addressed.

2. Spreading and wetting of Newtonian fluids

2.1. Experimental observation

For a drop of a complete wetting fluid with radius smaller than
the capillary length, lc = √

σ/ρg, the drop can spread until it
reaches a film thickness controlled by surface forces. For thin
droplets with radius R(t), −h′(R) = tan(θap) ≈ θap, where θap

is the apparent contact angle, and θap ∝ R(t)−3, assuming the
drop has a spherical shape.

Correlations between contact angle and the droplet
spreading speed were developed. For complete wetting of
small drops, the well known Tanner’s law was applied [15]:

R(t) ∝ tm . (1)

The power m = 1/10 is noted for viscous spreading of small
droplets [16]. As the radius of the droplet grows beyond the
capillary length, the gravity force dominates and the shape
of the drop becomes pancake-like, curved only at the drop
rim, yielding an m = 1/8 when bulk phase fluid dissipation
dominates or m = 1/7 when contact line fluid dissipation
dominates [17]. A crossover between m = 1/10 and 1/8 was
reported in the experiments of Cazabat and Cohen-Stuart [18],
while Ehrhard [19] found a crossover from 1/10 to 1/7.
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Figure 1. Schematic diagram of a spreading drop and various mechanisms proposed for relieving the dynamic singularity at the moving
contact line. (a) Precursor film; (b) velocity slip at the wall; (c) shear-thinning transition; (d) diffuse interface; (e) molecular hopping process.

Viscous dissipation in drop spreading for low viscosities is
negligible, which leads to m = 1/2 in the early stage of
wetting [20], and m = 2/3 in the latter stage of wetting [21].

Much less information is known for partial wetting fluid
spreading. Lavi and Marmur [22] proposed the following
equation for correlating the spreading data for Newtonian
fluids:

A = Aeq

(
1 − exp

(
− a

Aeq
tm

))
(2)

where A is the wet area of the spreading droplet, and a and m
are coefficients.

2.2. Theoretical models

Use of Navier–Stokes equations for describing the spreading
of Newtonian fluids with the no-slip boundary condition yields
a diverging energy dissipation rate at the contact line [23]. At
least five approaches have been adopted to overcome the stress
singularity difficulty.

A conventional view for the complete wetting fluids
considers the contact line to be preceded by a thin
fluid precursor film, which is driven by van der Waals
forces [1, 24, 25]. The precursor film at a thickness
of 10–100 nm has been experimentally confirmed [26–28]
(figure 1(a), lower panel).

A slip boundary at the contact line was adopted to remove
the stress singularity paradox [23, 29, 30], which was later
verified by MD simulations [31, 32]. Recently, Thompson and
Troian proposed a generalized slip boundary condition relating
to the static properties and dynamic interactions of the walls
and the fluid [33] (figure 1(b), lower panel).

The stress singularity would vanish if the fluids exhibited
shear-thinning properties [34–36]. The viscosity of shear-
thinning fluids decreases as shear rate grows, so the entire
viscous dissipation rate is finite (figure 1(c), lower panel).

The chemical-potential-gradient-induced diffusion inter-
prets the motion of the contact line in the framework of
the diffuse-interface model [37–42]. The diffuse-interface
model assumes an interface of finite thickness over which
various properties change continuously (figure 1(d), lower
panel). A similar model has been developed by Shikhmurzaev,
which focused on a third interface phase with its own proper-
ties [43–45].

Blake and his co-workers developed a model accounting
for the unequal frequencies of liquid molecules hopping across
the contact line at the solid surface [46–48]. This model
is referred to as the ‘molecular kinetic theory’ (MKT), and
assumes that energy dissipation occurs in the immediate
vicinity of the moving contact line due to the adsorption and
desorption process of fluid particles on the adsorption sites at
the solid surface [49] (figure 1(b), lower panel).
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Although most studies on fluid spreading or wetting
are based on the lubrication approximation without inertial
components, recent articles [50–52] have considered inertia
force in Newtonian fluid spreading. The inertia components
decrease the interface deformation and the apparent contact
angle compared to the case with Re = 0 at the same capillary
number (Ca = Uμ/σ ).

3. Models for non-Newtonian fluids

3.1. Fluid rheology and experiments

Research on non-Newtonian fluid spreading considered shear-
thinning fluids [7–14, 34, 35, 53–55], shear-thickening
fluids [8–10, 13, 14] or viscoelastic fluids [11, 12, 54, 56]. For
shear-thinning or shear-thickening liquids, namely the power-
law liquids, the constitutive relationship can be expressed as
follows:

τ = kγ̇ n (3)

μ = kγ̇ n−1 (4)

where τ denotes the shear force, γ̇ denotes the shear rate,
k denotes the consistency coefficient, n denotes the power
exponent and μ the apparent viscosity, respectively. If n < 1,
the apparent viscosity decreases as the shear rate increases,
revealing a shear-thinning characteristic. At n > 1, the
apparent viscosity increases as the shear rate increases, and
the fluids are shear-thickening or dilatant fluids. At n = 1,
equations (3) and (4) converge to a Newtonian fluid.

For fluids with normal stress effects, the Reiner–Rivlin
expression is adopted:

�τ = 2μĖ + α Ė · Ė (5)

where μ and α are constant coefficients related to fluid
properties and Ė is the shear rate tensor; in this case Ė =
1/2∂vx/∂z(�ex �ez + �ez�ex). The stress components which are not
zero are the shear stress, τzx = μ(∂vx

∂z ), and the normal stress,

τxx = τzz = α
4 ( ∂vx

∂z )2.
We compared the theoretical models in the next sections

with the spreading data collected in the literature and with
those collected in this study. An experimental section is
available in the appendix. Also, we noted dynamic surface
tension effects for the commonly used xanthan solutions,
which should be considered in experimental design and
subsequent data analysis.

3.2. Lubrication models

Most theoretical models for non-Newtonian spreading adopted
the lubrication approximation and no-slip boundary conditions
at the contact line regime (figure 2). One group of researchers
assumed a wedge shaped contact line surface [7, 54]
(figure 1(b)), and another group of researchers assumed a
free surface [8–10, 13, 55]. These models consider a two-
dimensional spreading at a steady velocity of U using a
Cartesian coordinate framework.

The lubrication approximation form of the flow equation
can be stated as follows:

∂p

∂x
= ∂

∂y

(
μ

∂u

∂y

)
. (6)

The boundary conditions consist of the no-slip condition at the
solid surface and the no-shear condition at the free surface:

u|z=0 = 0 (7)

∂u

∂z

∣∣∣∣
z=h

= 0. (8)

Integrating equation (6) along the z direction yields the velocity
equation involving the pressure gradient in the x direction px

and the thickness of the fluid layer h.
References [7, 54] adopted a wedge-like layer at the

contact line regime as follows:

h = θx (9)

where θ is the dynamic contact angle. Then integrating again
the velocity equation along the z direction and substituting into
the volume conservation equation leads to

Q = Uh (10)

where Q is the volume flux across a layer section. One can
hence obtain the explicit velocity distribution u = u(x, h) [7],
or its approximate expression [54].

We integrate the viscous dissipation in the flow region as
follows:

Ev =
∫ L

0

∫ h

0
μ

(
∂u

∂z

)2

dz dx (11)

where L is the macroscopic characteristic length of the wetting
system, conventionally considered as the drop radius [1]. The
energy balance of the wedge shape model takes a contact angle
with the surface tension energy equilibrating with the viscous
effect [1]:

Ev = Eσ = Uσ(cos θeq − cos θ). (12)

Equation (12) can be rearranged into the θ versus U
relationship. Note that the developed wedge shape models
account for capillary energy, hence are valid in the capillary
wetting regime only.

Free surface models [8–10, 13, 55] followed a similar
solution logic but released the wedge shape constraint for the
contact line regime. Instead, these models looked for film
thickness distribution by solving the stress balance equation.
The presence of gravity acts on the liquid film as follows:

∂p

∂z
= −ρg. (13)

The force balance normal to the free surface follows the
Young–Laplace equation and can be stated as in the following:

p|z=h = pg − σ

∂2h
∂x2(

1 + (
∂h
∂x

)2)3/2 ≈ pg − σ
∂2h

∂x2
(14)
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Figure 2. Schematic solution diagram of prevalent spreading models for non-Newtonian fluids.

where pg is atmospheric pressure. Combining equations (13)
and (14) yields

∂p

∂x
= ρg

∂h

∂x
− σ

∂3h

∂x3
. (15)

Substituting equation (15) into the volume conservation
equation yields a partial differential equation for fluid layer
thickness, h(x). One can obtain analytical solutions for film
thickness distributions considering the capillary wetting limit
or gravitational wetting limit. The contact angle can thereby
be defined and associated with the spreading speed U .

Starov et al [9] adopted the lubrication approximation
to establish their hydrodynamic model for complete wetting,

power-law fluids. Their derivation considering capillary
force or gravity force dominated regimes for an approximate
symmetrical sphere leads to respectively

R(t) ∼ t
n

3n+5 (16)

or
R(t) ∼ t

n
3n+7 . (17)

Betelu and Fontelos [8, 10] studied capillary spreading by
adopting different self-similar solution forms from Starov
et al, and solved the high-order ODE numerically without
the assumption of complete wetting. These authors achieved
exactly the same spreading laws (equations (16) and (17)) for
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Figure 3. Comparison of spreading exponents of complete wetting
fluids with Starov’s model [9]. Solid curve, gravitational spreading
curve; dotted curve, capillary spreading curve; squares, data of Wang
et al [14]; solid circles, data of Rafai and Boon [11, 12]; triangles,
data of present work.

the complete wetting fluids. Restated, in either the capillary or
the gravity regime, the complete wetting shear-thinning fluid
would spread more slowly than Newtonian fluids; conversely,
the complete wetting shear-thickening fluids would spread
faster than the Newtonian counterparts. At the n � 1 limit
for the strongly shear-thickening characteristic, R(t) ∼ t1/3

for both capillary and gravity regimes. At the n → 0 limit, for
the strongly shear-thinning characteristic, R(t) ∼ tn/5 or tn/7.

3.3. Spreading of complete wetting fluids

Wang et al [14] experimentally evaluated the spreading
behavior for complete wetting and partial wetting power-
law fluids. Their complete wetting data using five xanthan
solutions with various concentrations on mica surface (shear-
thinning fluids) and PPG + 7.5% w/w 10 nm silica powders
and PPG + 10% w/w 10 nm silica on glass slides (shear-
thickening fluids) are compared with those collected from
Rafai et al [11, 12] in figure 3. The spreading data collected
herein (see the appendix) are also included in the figure for
comparison.

Experimental findings follow the same trend as noted for
the prediction by Starov et al [9]: m > 0.1 when n > 1 and
m < 0.1 when n < 1. At n = 1, m = 0.1, corresponding to the
known Tanner’s law (equation (1)) for capillary spreading for
Newtonian fluids. However, certain deviations were noticeable
between experimental data and the theory as n deviates from
unity. As n decreases for shear-thinning fluids, the spreading
index decreases, but the behavior gradually approaches the
gravity controlled model. Particularly, when n < 0.4, the
spreading well fitted the gravity spreading theory. Conversely,
as n increases for shear-thickening fluids, the spreading index
m is lower than those predicted by capillary or gravity models.
For instance, at n = 1.669, m = 0.1157 ± 0.0045, much
lower than that predicted by capillary (0.140) or gravity (0.168)
models. Carré and Woehl [36] interpreted that the Newtonian

Figure 4. log R(t)–log t plot of 1 wt% xanthan solution with
different droplet volumes.

fluid will reveal the shear-thinning characteristic at high shear
rate, such as at the contact line regime, to suppress the stress
singularity in hydrodynamic modeling. The shear-thickening
fluid reveals a flow characteristic similar to those with an
apparent n (napp) lower than that from the rheological test (n),
as revealed in figure 3. For instance, at n = 1.699, napp is only
approximately 1.1 based on the Starov et al capillary model.
One possible reason corresponding to the noted discrepancy
is the limited diffusion rate for 10 nm silica powders in PEG
suspension at the contact line regime when the dilatant fluid
spreads. The contact line regime may be enriched by pure PPG
liquid with a minimal quantity of silica powders, a Newtonian
fluid behavior hence prevailing.

3.4. Partial wetting fluid spreading

de Ruijter et al [57] divided the spreading process into three
stages: initial, R(t) ≈ R0 + at ; and the intermediate stage;
and finally, R(t) ∝ t0.1. Wang et al [14] refined the approach
by Lavi and Marmur [22] using contact radius as the fitting
parameter to correlate the spreading data of power-law fluids
(equation (18)).

R = Req

(
1 − exp

(
− a

Req
tm

))
. (18)

For the completely wetting system, Req → ∞, so
equation (18) converges to R = atm , the correlation for
completely wetting systems. The parameters a and m were
used as fitting parameters for linearly regressing R(t) with
known Req. The higher m corresponds to the faster drop
spreading on the substrate.

The droplet volume affects the spreading dynamics for
non-Newtonian fluids. Figure 4 shows the spreading radius of
1 wt% xanthan solution with different droplet volumes. The
single power law R = atm fails to describe the entire data
range, while the empirical equation, equation (18), describes
well the data. Table 1 lists the regression parameters of each
set of spreading data by equation (18). As the drop volume
increases, the spreading exponent m increases, indicating that

5
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Table 1. Best-fit parameters for partially wetting, power-law fluids and power exponents of equation (18).

Concentration
(wt%)

Volume
(μl) Req (m) a m θeq (deg)

Correlation
coefficients r 2

1 2 0.001 682 0.004 365 0.1868 35.3 0.9955
3 0.001 814 0.004 463 0.1909 35.1 0.9962
4 0.001 964 0.004 650 0.2040 34.5 0.9977
5 0.002 135 0.004 890 0.2212 35.2 0.9987
6 0.002 293 0.004 943 0.2475 35.4 0.9971
7 0.002 414 0.004 601 0.2785 35.4 0.9895

0.5 2 0.001 654 0.004 949 0.2050 34.5 0.9724
3 0.001 865 0.004 803 0.2407 34.8 0.9936
4 0.002 006 0.004 503 0.1437 34.4 0.9867
7 0.002 407 0.005 611 0.2165 36.8 0.9924

0.05 2 0.001 818 0.007 473 0.1811 23.5 0.9993
4 0.002 238 0.008 700 0.2021 24.5 0.9910
7 0.002 681 0.011 52 0.2164 23.1 0.9788

Figure 5. Static contact angles for xanthan solutions on glass. Black
squares, 3 μl for 0.2 wt% and 6 μl for 0.05 and 0.5 wt%; red dots,
0.5 μl.

the droplet would spread faster. This observation correlates
qualitatively with the model by Starov et al [9] in the case of
complete wetting and small dynamic contact angle. Effects
of droplet volume were not explicitly revealed in the form of
equation (18).

Static contact angle (θ0) is an essential parameter
determining the spreading dynamics of partial wetting fluids.
Spreading tests with droplet relaxation commonly adopted
small droplets to exclude the gravity effects [11, 13, 14].

The present tests revealed that the droplet volume affects
the static contact angle (figure 5). Hence, the possible role
of gravity may not be totally negligible for the reported non-
Newtonian fluid tests.

3.5. Dynamic contact angle and spreading velocity

When the contact line moves, the dynamic contact angle (θ )
would deviate from the static contact angle (θeq) to yield the
driving energy from the non-compensated surface tension force
(equation (12)). Meanwhile, the shear force confronts the

movement of the contact line. Under the steady spreading
condition, the viscous dissipation is balanced with the driving
energy (equation (11)), and produces the following equation
for Newtonian fluids [7].

log(cos θeq − cos θ) = log

(
U

θ

)
+ log

(
3μς

σ

)
(19)

where ς is the logarithm of the ratio of the macroscopic size to
a microscopic cutoff length.

Carré and Eustache [7] assumed a liquid wedge at the
contact line and deduced the velocity distribution of the wedge
and obtained the viscous dissipation as follows:

Ev =
∫

liquid
τ
∂v

∂z
dx dy =

∫ R

xm

∫ h

0
a

(
∂v

∂z

)n+1

dz dx

= a
(2n + 1)n

(1 − n)(nθ)n
U n+1(R1−n − x1−n

m ). (20)

Around the microscopic cutoff length, xm , the liquid
wedge is curved by long-range van der Waals forces. Carré and
Eustache limited their discussions with shear-thinning fluids
(n < 1), hence x1−n

m � R1−n and is removed from the final
expression of the relationship between θ and U :

log(cos θeq − cos θ) = n log

(
U

θ

)
+ log

(
φk

σ

)
, n < 1

(21)

where φ = R1−n (2+ 1
n )n

1−n . Notably, equation (21) is similar
in form to the Newtonian case (equation (19)). Carré
and Eustache [7] noted linear correlation for their spreading
data with PDMS + silica and acrylic typographic ink in
log(cos θeq − θ)–log(U/θ) scales with the slope denoting the
corresponding power exponent n.

Equation (21) fails to describe the spreading of shear-
thickening fluids since it acquires xm � R for avoiding the
divergence in energy dissipation at the cutoff length. This
contracts the assumption that the cutoff length presents an
incremental distance from the contact line to prevent the stress
singularity. Additionally, fitting data by Carré and Eustache [7]
using equation (21) yields R = 0.529 and 9.804 μm for
PDMS + silica and ink tests, respectively. The fit R values
for shear-thinning fluids are unrealistic.
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Neogi and Ybarra [54] investigated spreading dynamics
using Ellis fluids and Reiner–Rivlin fluids in a capillary
spreading regime. They also adopted the lubrication
approximation and energy balance method as in [7]. Taking
limits at the dimensionless H → 0 and at H → ∞ yields
an approximate expression for Ellis (shear-thinning) fluids as
follows:

Ev = 3μ0U 2

θ
ln L − (α + 2)1/α 3μ0U

θ1/α

(
xm

h0

)1−1/α

(22)

where h0 = 3μ0U/τ1/2 and L is the macroscopic characteristic
dimension of the wetting system. Since xm is small and α > 1,
the second term on the right-hand side is negligible. Then the
dissipation is almost the same as that of Newtonian fluids [1]:

Ev ∼ 3μU 2

θ
ln

(
L

l

)
(23)

where l is the microscopic cutoff length of the magnitude
of molecular dimensions, and should depend on the removal
formulation of the stress singularity. Therefore, Neogi and
Ybarra proposed that Newtonian results would hold for Ellis
fluids by the substitution of zero shear viscosity μ0 for the
constant viscosity.

The conclusion by Neogi and Ybarra is incompatible with
analysis by Carré and Eustache [7] and with the experimental
results [7, 13]. Arguments may arise from the physical
interpretation of characteristic length L. Restated, if L is
comparable to xm , the second term in equation (22) may have
an effect on the spreading. As mentioned above, the data fitting
based on Carré and Eustache’s data reveal that L (that is, R) is
of the order of 10−5–10−6 m. The conclusions made by Neogi
and Ybarra should be revisited to resolve this controversy.

Starov et al [9] deduced the analytical solution for
the droplet profile of spreading power-law fluids in the
gravity regime. However, for the capillary wetting regime,
no analytical solution was available for the dimensionless
equation of droplet thickness stated in the following:

(
1

r̂m
(r̂mζ ′)′

)′
= sgnλ|λ|nζ−n−1 (24)

where λ is a dimensionless constant and r̂ = r/R(t). Starov
et al [9] proposed that the part of complete wetting power-law
fluid droplets that controls spreading is the spherical cap except
in a limited region near the contact line; hence, the right-hand
term in equation (24) is negligible and the dynamic contact
angle equation in the capillary wetting regime can be stated
as follows:

θ ≈ tan θ = 8

(
2n + 1

λ

) 3n
7+2n

(
V

2π

) 1−n
7+2n

(
kU

σ

) 3
7+2n

. (25)

The theoretical analyses by Carré and Eustache [7], Wang
et al [13] and numerical analysis by Betelu and Fontelos [8, 10]
all demonstrated a non-spherical droplet shape on spreading.
The theories by Carré and Eustache [7] and Wang et al
[13] revealed that the local film thickness is proportional to
x3/(n+2) (distance from contact line) for shear-thinning fluids in

capillary spreading. Deviation from spherical shape increases
with increasing n index. For instance, h(x) ∼ x1.08 for
PDMD + silica spreading [7], and h(x) ∼ x1.35−1.40 for
xanthan solutions [14].

Wang et al [13] analyzed the evolution equation for liquid
film thickness with the lubrication approximation and derived
the dynamic contact angle expressions for power-law fluids in
complete wetting spreading:

θD ≈ tgθD =
(

k

σ
U n

) 1
n+2

(
3n+1(n + 2)1−n

(2n + 1)1−n(1 − n)nn

) 1
n+2

× x
1−n
n+2
m n < 1 (26a)

θD ≈ tgθD =
(

k

σ
U n

) 1
n+2

(
3n+1(n + 2)1−n

(2n + 1)1−n(n − 1)nn

) 1
n+2

× x
1−n
n+2
m n > 1 (26b)

where xm is the cutoff length. These authors adopted the ‘shift
factor’ concept proposed by Hoffman [58] to extend these
equations to partial wetting fluids. The generalized expressions
of dynamic contact angle were obtained as follows:

cos θ0 − cos θ = 1

2

(
k

σ
U n

) 2
n+2

(
3n+1(2n + 1)n−1

(n + 2)n−1(1 − n)nn

) 2
n+2

× x
2 1−n

n+2
m n < 1 (27a)

cos θ0 − cos θ = 1

2

(
k

σ
U n

) 2
n+2

(
3n+1(2n + 1)n−1

(n + 2)n−1(n − 1)nn

) 2
n+2

× x
2 1−n

n+2
m n > 1. (27b)

Wang et al [13] correlate well the proposed equations (26)
and (27) with the wetting data for both shear-thinning and
shear-thickening fluids on completely or partially wetting
substrates. Efforts are to be made to make clear why one can
extend the use of equations (26)–(27).

3.6. Extension of Newtonian fluid models to power-law fluids
and perspectives

As discussed in section 2, there are at least five approaches
for relieving the stress singularity difficulty in modeling.
However, as shown in figure 2, the prevailing models for
non-Newtonian fluids solve the Navier–Stokes equations with
shear-thinning conditions at the contact line. These models
correlate limited experiment data, leaving some non-trivial
problems unresolved. The use of other spreading models on
power-law fluids are herein discussed.

In complete wetting tests, precursor films may also exist
in front of the non-Newtonian fluid droplets (figure 1(a),
lower panel). The solution procedures will resemble those
with Newtonian fluids, but with different matching functions
incorporating the solutions between precursor film and the
external flow which turns in non-Newtonian types. The
thickness of precursor films for non-Newtonian fluids can be
applied for matching the bulk flow solution, such as h(xm) in
Carré’s model. Additionally, the energy dissipation in the non-
Newtonian precursor film can be used in formulating the total
energy balance for the spreading droplets.

7
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Various slip boundary conditions can also be imposed on
non-Newtonian fluid spreading modeling (figure 1(b), lower
panel). However, the mathematical implementation would be
quite lengthy by adopting a complex constitutive expression
for non-Newtonian fluids. The no-slip boundary conditions in
the available models for non-Newtonian droplet spreading can
be replaced. This approach should be particularly useful for
modeling shear-thickening fluid spreading.

The shear-thinning hypothesis proposed by [34–36] will
work equally well in the shear-thinning fluids (figure 1(c),
lower panel). As discussed in section 3.3, the shear-thickening
fluid may reveal a flow characteristic similar to those with an
napp < n. As hypothesized in section 3.3, the limited mass
transfer rate of dispersed silica particles in the PEG suspension
to the contact line regime may be contribute to the noted
decreased napp in tests. Hence, the shear-thinning hypothesis
may interpret the spreading of shear-thickening fluids if the
local rheological properties are altered by the applied fluid
fields.

The diffuse-interface model is a promising way for
handling divergent dissipation at the contact line (figure 1(d),
lower panel). The model generally involves modified Navier–
Stokes equations associated with the microscopic structure
of the interface [42]. To minimize the dissipation, let
the variables α1, α2, . . . αi describe the displacement from
thermodynamic equilibrium; the variational principle can be
applied as follows [41]:

δ[�(α̇, α̇) + Ḟ(α̇, α̇)] =
n∑

i=1

(
∂�

∂α̇i
+ ∂ F

∂αi

)
δα̇i = 0 (28)

where �(α̇, α̇) is the dissipation function and Ḟ(α̇, α̇) is
the rate of change of the free energy. The free energy is
assumed to be composed of a Landau free energy functional
and the interfacial free energy per unit area at the fluid–
solid interface. Then the dissipation function �(α̇, α̇) for
immiscible two-phase flows can be formulated considering
various forms of dissipation. The hydrodynamic model for the
contact line motion can be formulated by solving equation (28),
supplemented with the incompressibility condition ∇ · v = 0.
Equation (28) can be formulated based on non-Newtonian
fluid rheology considering the dissipation expression. Detailed
derivation and analysis is worthy of further investigation.

The MKT revealed a dynamic contact angle that is
independent of liquid viscosity [46, 47]; therefore, the
spreading of Newtonian and non-Newtonian liquids should be
handled in a similar way. The MKT was further extended
to consider the effects of apparent viscosity [47], equilibrium
contact angle and reversible work of adhesion [48]. The
correlation between dynamic contact angle and spreading
speed in MKT is described as

cos θ = cos θeq − 2kT

σλ2
arcsin h

(
V

2Kwλ

)
(29)

where k is Boltzmann’s constant, T is the temperature, λ is the
typical distance between two neighboring absorption sites on
the solid surface, and Kw is the equilibrium frequency resulting

from molecular displacements in the direction of spreading.
Kw is related to the activation free energy of wetting �G0 by

Kw = kT

h
exp

(
−�G0

NkT

)
(30)

where h is Planck’s constant and N is Avogadro’s number.
Compared with the exhaustive studies on Newtonian fluid

spreading, the available theoretical models for non-Newtonian
liquid spreading are rather limited. Very different forms of
constitutive equations for fluid rheology are presented for
typical non-Newtonian fluids. Competition among various
forces acting at the contact line regime for numerous kinds of
non-Newtonian fluids deserves detailed discussion.
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Appendix. Experimental section

A.1. Samples

All chemicals were of highest purity from Sigma-Aldrich
(Taiwan) and were used without further purification. Xanthan
solutions were the test samples. Xanthan solutions on a mica
surface present complete wetting, while the xanthan solutions
on a glass slide are partial wetting systems.

A clean microscope glass slide and mica were the tested
solid substrates. For the microscope glass slide all experiments
were conducted on the same piece of the slide and the slide
was cleaned strictly using detergent, ultra-pure water, 99.5%
ethanol, 2N nitric acid, and acetone, with ultrasonication. The
mica foils were split carefully to get clean and smooth surfaces.
Before each experiment dry nitrogen was flowed to dry the
slide or mica.

A.2. Measurements and tests

The surface tensions of all tested liquids were measured by a
Krúss Processor Tensiometer K12 (Krúss GmbH, Hamburg,
Germany). A cone-plate rheometer (Advanced Rheometric
Expansion System) measured the apparent viscosity versus
shear rate relationship for all tested liquids.

The static contact angle and the drop spreading
dynamics tests were conducted using an FTA125 Dynamic
Contact Angle Analyzer (Contact Angle and Surface Tension
Instruments, Portsmouth, USA). A drop of selected liquid of
volume 0.5–7 μl was deposited from the top of the horizontally
placed substrate. The measurement results are listed in
table A.1.

The images of the deposited drop were recorded at
60 frames s−1 by a CCD camera and sent to a computer
for storage and processing. The contact angle θ(t) and the
wetting radius R(t) as function of time t were obtained by
analyzing each frame with the built-in software using non-
spherical fitting. The static contact angle was measured at the
end of the spreading test. At least four identical tests were
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Table A.1. Characteristics of fluids tested in the present work.

Concentration of
xanthan (ppm)

Stable σ

(mN m−1)
k
(Pa sn) n

lc

(mm)
Volume
(μl) Substrate Note

500 65.93 0.032 96 0.6292 2.59 2/4/7 Glass slide Tested at
28 ◦C

5 000 49.90 3.529 0.2260 2.26 2/3/4/7 Glass slide
10 000 43.55 7.990 0.1930 2.11 2–7 Glass slide

500 72.81 0.0644 0.5973 2.73 0.5/6 Glass slide Tested at
20 ◦C

0.5/3 Mica
2 000 68.97 0.6468 0.3816 2.65 0.5/3 Glass slide

0.5/3 Mica
5 000 57.17 4.409 0.2093 2.42 0.5/6 Glass slide

0.5/3 Mica

Figure A.1. Surface tension tests of xanthan solutions.

conducted under each experimental condition to assure data
reproducibility.

The test xanthan solutions have capillary length of 2.2–
2.6 mm. Hence, the drop radius range covered the capillary
and gravitational spreading regimes.

A.3. Surface tension measurements

The surface tensions of xanthan solution present the
most widely used shear-thinning fluid tested in the litera-
ture [11, 13, 14, 55]. However, its reported surface tension data
revealed discrepancy. For instance, surface tension of xanthan
solutions was reported in a range of 44–66 mN m−1 [14], at
a constant of 72 mN m−1 at 20 ◦C [11], or of 65 mN m−1 at
25 ◦C [55]. We tested herein and noted dynamic surface ten-
sion (DST) effects (figure A.1). Preparation and handling of
xanthan solutions before spreading tests could affect the exper-
imental results.
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